Machine Learning Approach for Prediction of Learning Disabilities in School-Age Children
نویسندگان
چکیده
This paper highlights the two machine learning approaches, viz. Rough Sets and Decision Trees (DT), for the prediction of Learning Disabilities (LD) in school-age children, with an emphasis on applications of data mining. Learning disability prediction is a very complicated task. By using these two approaches, we can easily and accurately predict LD in any child and also we can determine the best classification method. In this study, in rough sets the attribute reduction and classification are performed using Johnson’s reduction algorithm and Naive Bayes algorithm respectively for rule mining and in construction of decision trees, J48 algorithm is used. From this study, it is concluded that, the performance of decision trees are considerably poorer in several important aspects compared to rough sets. It is found that, for selection of attributes, rough sets is very useful especially in the case of inconsistent data and it also gives the information about the attribute correlation which is very important in the case of learning
منابع مشابه
Hypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method
Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...
متن کاملHypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method
Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...
متن کاملPrediction of Learning Disabilities in School Age Children using SVM and Decision Tree
This paper highlights the prediction of Learning Disabilities (LD) in school-age children using two classification methods, Support Vector Machine (SVM) and Decision Tree (DT), with an emphasis on applications of data mining. About 10% of children enrolled in school have a learning disability. Learning disability prediction in school age children is a very complicated task because it tends to b...
متن کاملPrediction of Key Symptoms of Learning Disabilities in School-Age Children Using Rough Sets
This paper highlights the prediction of learning disabilities (LD) in school-age children using rough set theory (RST) with an emphasis on application of data mining. In rough sets, data analysis start from a data table called an information system, which contains data about objects of interest, characterized in terms of attributes. These attributes consist of the properties of learning disabil...
متن کاملComparative Study of Decision Trees and Rough Sets for the Prediction of Learning Disabilities in School-Age Children
This paper highlights the study of two classification methods, Rough Sets Theory (RST) and Decision Trees (DT), for the prediction of Learning Disabilities (LD) in school-age children, with an emphasis on applications of data mining. Learning disability prediction is a very complicated task. By using these two classification methods we can easily and accurately predict LD in any child. Also, we...
متن کامل